Identification and Modulation of the Key Amino Acid Residue Responsible for the pH Sensitivity of Neoculin, a Taste-Modifying Protein
نویسندگان
چکیده
Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS) and a neoculin basic subunit (NBS). Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s) responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.
منابع مشابه
Structural Basis of pH Dependence of Neoculin, a Sweet Taste-Modifying Protein
Among proteins utilized as sweeteners, neoculin and miraculin are taste-modifying proteins that exhibit pH-dependent sweetness. Several experiments on neoculin have shown that His11 of neoculin is responsible for pH dependence. We investigated the molecular mechanism of the pH dependence of neoculin by molecular dynamics (MD) calculations. The MD calculations for the dimeric structures of neocu...
متن کاملIdentification of key neoculin residues responsible for the binding and activation of the sweet taste receptor
Neoculin (NCL) is a heterodimeric protein isolated from the edible fruit of Curculigo latifolia. It exerts a taste-modifying activity by converting sourness to sweetness. We previously demonstrated that NCL changes its action on the human sweet receptor hT1R2-hT1R3 from antagonism to agonism as the pH changes from neutral to acidic values, and that the histidine residues of NCL molecule play cr...
متن کاملComparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout
Poultry by-products and rainbow trout (Onchorhynchus mykiss) viscera are abundant and underutilized resources that can be used as a unique protein source to make protein hydrolysates. In this study protein hydrolysate were made from these two different sources with Alcalase 2.4L. The functional properties of Fish viscera protein hydrolysate (FPH) compared to poultry by-products protein hydrolys...
متن کاملComparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout
Poultry by-products and rainbow trout (Onchorhynchus mykiss) viscera are abundant and underutilized resources that can be used as a unique protein source to make protein hydrolysates. In this study protein hydrolysate were made from these two different sources with Alcalase 2.4L. The functional properties of Fish viscera protein hydrolysate (FPH) compared to poultry by-products protein hydrolys...
متن کاملTaste activity value, free amino acid content and proximate composition of Mountain trout (Salmo trutta macrostigma Dumeril, 1858) muscles
In the present study, we identified free amino acid (FAA) contents and chemical composition in four populations of Salmo trutta macrostigma living in Mediterranean region of Turkey. In addition, taste impacts of FAAs were evaluated by taste active values. Moisture, protein, fat and ash content were found in the ranges of 75.49 - 79.59 %, 16.94 - 19.97 %, 1.58 - 3.75 % and, 1.39 - 1.56 %, respec...
متن کامل